Scaling Properties of the Spread Harmonic Measures
نویسنده
چکیده
A family of the spread harmonic measures is naturally generated by partially reflected Brownian motion. Their relation to the mixed boundary value problem makes them important to characterize the transfer capacity of irregular interfaces in Laplacian transport processes. This family presents a continuous transition between the harmonic measure (Dirichlet condition) and the Hausdorff measure (Neumann condition). It is found that the scaling properties of the spread harmonic measures on prefractal boundaries are characterized by a set of multifractal exponent functions depending on the only scaling parameter. A conjectural extension of the spread harmonic measures to fractal boundaries is proposed. The developed concepts are applied to give a new explanation of the anomalous constant phase angle frequency behavior in electrochemistry.
منابع مشابه
Orthogonal Harmonic Analysis and Scaling of Fractal Measures Analyse Harmonique Orthogonale Des Mesures Fractales
We show that certain iteration systems lead to fractal measures admitting exact orthogonal harmonic analysis.
متن کاملImplicational Scaling of Reading Comprehension Construct: Is it Deterministic or Probabilistic?
In English as a Second Language Teaching and Testing situations, it is common to infer about learners’ reading ability based on his or her total score on a reading test. This assumes the unidimensional and reproducible nature of reading items. However, few researches have been conducted to probe the issue through psychometric analyses. In the present study, the IELTS exemplar module C (1994) wa...
متن کاملSuper algebra and Harmonic Oscillator in Anti de Sitter space
The harmonic oscillator in anti de Sitter space(AdS) is discussed. We consider the harmonic oscillator potential and then time independent Schrodinger equation in AdS space. Then we apply the supersymmetric Quantum Mechanics approach to solve our differential equation. In this paper we have solved Schrodinger equation for harmonic oscillator in AdS spacetime by supersymmetry approach. The shape...
متن کاملSome geometrical properties of the oscillator group
We consider the oscillator group equipped with a biinvariant Lorentzian metric. Some geometrical properties of this space and the harmonicity properties of left-invariant vector fields on this space are determined. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. Left-invariant vector fields defining harmonic maps are...
متن کاملA certain convolution approach for subclasses of univalent harmonic functions
In the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.
متن کامل